
1 Thermal Noise

1.1 History and Background

In 1827 the Scottish botanist Robert Brown observed that pollen grains and other small

objects suspended in water perform a random zigzag motion. He initially thought he was

“seeing” evidence of life. This motion was given the name Brownian for its discoverer. Later

in the 19th century it was realized that Brownian motion is created by the impact of the

molecules of the fluid surrounding the object due to the fluctuations in the ambient thermal

energy (i.e. temperature). A theory that explained this phenomena was developed in 1905

by Albert Einstein based on the kinetic theory of gases.

The motion of the particle is essentially a random walk, with steps to the right equally

as probable as steps to the left. Einstein suggested that the mean kinetic energy per degree

of freedom of the particle should be given by statistical mechanics and the equipartition of

energy as

1

2
M v 2

x =
1

2
kBT ; (1)

where M is the mass of the particle, vx its instantaneous velocity component in the x-

direction, v 2
x its mean-squared value (the variance for a zero mean process), kB is Boltzmann’s

constant, and T the absolute temperature. However, what is actually “observed” under the

microscope is not the instantaneous velocity, but the displacement ∆x in the x-direction

during the time interval t. Einstein showed that

∆x2 = 2 D t , (2)

where ∆x2 is the mean-squared value of ∆x and D is the diffusion constant of the particle.

Einstein realized that many physical systems would exhibit Brownian motion. Thermal

noise in circuits is nothing more than Brownian motion of electrons due to the ambient

temperature.

The first person to measure Thermal noise in conductors was J. B. Johnson in 1928 while

working at Bell Labs. He explained his findings to H. Nyquist who also worked at Bell Labs.

Nyquist derived an expression by means of thermodynamics and statistical mechanics which

fit Johnson’s measurements. The work of these two men has led to Thermal Noise being

called Johnson Noise by experimental physicists and Nyquist Noise by theoreticians. Johnson

found that thermal agitation of electricity in conductors produces a random variation in the

potential between the ends of the conductor. The electromotive force developed across the
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ends of the conductor due to Thermal noise is unaffected by the presence or absence of direct

current. This can be explained by the fact that electron thermal velocities in a conductor

are much greater (∼ 103 times) than electron drift velocities. Johnson also found that the

mean-squared voltage fluctuation across the ends of the conductor was directly proportional

to the resistance of the conductor and directly proportional to the absolute temperature of

the ambient about the conductor.

Thermal noise is a fundamental physical phenomenon and is present in any passive

resistor above absolute zero temperature. The amplitude distribution of Thermal noise

is Gaussian in three dimensions (Central Limit Theorem), which can be illustrated by a

random walk process. We will investigate Thermal noise using van der Ziel’s method, the

mathematical techniques shown in deriving Shot noise and finally Nyquist’s derivation.

1.2 van der Ziel’s Derivation of Thermal Noise

Consider a resistor R in parallel with a capacitor C. As a result of the random thermal

agitation of the electrons in the resistor, the capacitor will be charged and discharged at

random. The average energy stored in the capacitor will be:

1

2
C V 2 =

1

2
kBT , or V 2 =

kBT

C
; (3)

where V 2 is the mean-square value of the voltage fluctuation empressed across the capacitor.

This equation can be proved by the equipartition theorem as follows.

If a system has a temperature T , the probability that it has an energy E is propotional

to exp(−E/kBT ), which is called the Boltzmann factor. In the RC circuit the energy stored

in the capacitor C is 1
2
CV 2, where V is the voltage across C. The probability dP of finding

a voltage between V and (V + dV ) is therefore:

dP = Ko exp

(
− CV 2

2kBT

)
dV , (4)

where the constant Ko must be chosen so that;∫ ∞

−∞
Ko exp

(
− CV 2

2kBT

)
dV = 1 . (5)

Introducing the new variable

x2 =
CV 2

2kBT
, dx =

√
C

2kBT
dV ; (6)
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and then substituting into equation (5) gives

Ko

√
2kBT

C

∫ ∞

−∞
e−x2

dx︸ ︷︷ ︸√
π

= 1 , (7)

therefore

Ko =

√
C

2πkBT
. (8)

Now calculating the mean-squared voltage V 2 from the second moment gives

V 2 =

√
C

2πkBT

∫ ∞

−∞
V 2 exp

(
− CV 2

2kBT

)
dV , (9)

introducing the same variable x as before (6) yields

V 2 =

√
C

2πkBT

√(
2kBT

C

)3 ∫ ∞

−∞
x2 e−x2

dx︸ ︷︷ ︸√
π/2

. (10)

Finally after simplifying equation (10) gives

V 2 =
kBT

C
. (11)

Now we will prove Nyquist’s theorem with the help of a parallel RC circuit. We can

model the thermal noise in the resistor as an electromotive force (e.m.f.) in series with a

noiseless resistor R. The e.m.f. source has an r.m.s. value of (SV (0)∆f)1/2. Solving the RC

circuit for the voltage across the capacitor Vc leads to

dV 2
c = SV (0) df

(ωC)−2

R2 + (ωC)−2
=

SV (0)df

1 + (ωRC)2
. (12)

Integrating equation (12) we obtain

V 2
c =

∫ ∞

0

dV 2
c = SV (0)

∫ ∞

0

df

1 + (ωRC)2
. (13)

To solve the integral in equation (13), let x = ωRC, dx = 2πRC df and substitute into (13).

V 2
c =

SV (0)

2πRC

∫ ∞

0

dx

1 + x2︸ ︷︷ ︸
π/2

. (14)
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V 2
c =

SV (0)

4RC
. (15)

Now applying the equipartion law, equation (11), to equation (15) yields

V 2
c =

SV (0)

4RC
=

kBT

C
. (16)

Solving for the spectral density SV we get

SV (0) = 4kBTR . (17)

Equation (17) is called Nyquist’s Theorem and the symbol SV (0) for the spectral density

means that there is no frequency dependence. Noise with such a spectrum is called white.

1.3 Derivation of Thermal Noise from a Physical Model

We start with the simplest model of current transport through a resistor having a constant

scattering rate. Since Thermal noise is an equilibrium phenomenon, we will assume the

electric field is zero between the ends of the resistor. From the Shockley-Ramo theorem, the

current due to an electron with velocity v crossing a gap ` is

I(t) = qv(t)/` . (18)

Then the autocorrelation function for the current due to one electron is

〈
I(t)I(t + t′)

〉
=

q2

`2

〈
v(t)v(t + t′)

〉
. (19)

To evaluate the average over the velocities, note that with no electric field the velocity of

an electron is only changed by a scattering event. The probability that an electron remains

unscattered after a time t′ is e−t′/τ . After a scattering event, the new velocity is uncorrelated

with the old velocity, and consequently makes no contribution to the autocorrelation. Also,

we can make the same argument about correlation with prior times as with subsequent times.

Thus,

〈
I(t)I(t + t′)

〉
=

q2

`2

〈
v 2

〉
e−|t′|/τ . (20)

The expectation value of v 2 is found from an integrated Maxwellian velocity distribution or

invoking the equipartition theorem to obtain

〈
v 2

〉
= kBT/m∗ , (21)
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where m∗ is the effective electron mass. So we have

〈
I(t)I(t + t′)

〉
=

q2kBT

`2m∗ e−|t′|/τ , (22)

for the contribution of each electron to the autocorrelation function RI(t
′). Each electron

independently contributes to RI , so we need to multiply by the number of electrons in the

resistor; which is nA` where n is the electron density, A is the cross-sectional area, and ` is

the length of the resistor. Therefore, the total current autocorrelation function for Thermal

noise is

RI(t
′) =

q2nkBTA

m∗`
e−|t′|/τ . (23)

We need to know the Fourier transform pair for (23) which is

F
{
e−|t′|/τ

}
↔ 2/τ

ω2 + 1/τ 2
, (24)

where ω = 2πf . Now applying the Wiener-Khintchine theorem, we find the noise spectral

density to be

SI(f) =
2q2nkBTA

m∗`

(
2τ

1 + ω2τ 2

)

= 4kBTqn
qτ

m∗
A

`

(
1

1 + ω2τ 2

)

= 4kBTqnµn
A

`

(
1

1 + ω2τ 2

)

= 4kBT
σA

`

(
1

1 + ω2τ 2

)

=
4kBT

R

(
1

1 + ω2τ 2

)
. (25)

Here we have used the following definitions from device physics; mobility µn = qτ/m∗,

conductivity σ = qnµn, and resistance R = `/σA.

This derivation is different from any textbook or technical paper ever written. It was

motivated by Prof. Bill Frensley (UTD) who believes that the Fluctuation-Dissipation the-

orem is violated by the standard development. The frequency dependence seen in equation

(25) is called a Lorentzian characteristic. It has a single characteristic time constant τ which

sets the corner frequency at 1/2πτ . A picture of this type of spectrum is shown in Figure 3.

This τ is different from the one used in the Shot noise derivation. The τ here is the mean

time between carrier collisions (≈100 fs) with the lattice. This gives the corner frequency
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Figure 1: The frequency spectrum of the autocorrelation function for Thermal noise

at 1.6 THz which is well beyond the frequency that any integrated circuit can operate and

therefore the spectrum can be considered white for all practical purposes. Now it is instructive

to present Nyquist’s original derivation of his theorem.

1.4 Nyquist’s Development of Thermal Noise

The problem of Thermal noise in the resistor R can be viewed as a simple one-dimensional

case of black-body radiation. One need only consider an ideal (lossless) one-dimensional

transmission line of great length L which is terminated on both ends by resistances R with

the whole system being in equilibrium at the temperature T . The transmission line is chosen

so that its characteristic impedance is equal to R. Then any voltage wave propagating along

the line is completely absorbed by the terminating resistor R without reflection. The resistor

is then indeed the analog of a black body in one dimension. A voltage wave of the form

V = Vo exp[i(κx − ωt)] propagates along the transmission line with a velocity c′ = ω/κ. To

count the possible modes, we will consider the domain between x=0 and x = L and impose

the boundary condition V (L) = V (0) on the possible propagating waves. Then κL = 2πn,

where n is any integer, and there are ∆n = (1/2π)dκ such modes per unit length of the line

in the frequency range between ω and ω + dω. The mean energy in each mode is given by

the Plank distribution for bosons

E(ω) =
~ω

eβ~ω − 1
, (26)

where β ≡ 1/kBT is the standard symbol used in statistical mechanics textbooks.

Now we invoke the detailed balance argument by equating (in any small frequency range

ω and ω + dω) the power absorbed by a resistor to the power emitted by it. Since there are
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1/2π(dω/c′) propagating modes per unit length in this frequency range, the mean energy

per unit time incident upon a resistor in this frequency range is

Pi = c′
(

1

2π

dω

c′

)
E(ω) =

1

2π
E(ω) dω . (27)

This is the power absorbed by the resistor. By the principle of detailed balance this must be

equal to the power emitted by the resistor in this frequency range. But if the thermal emf

generated by a resistor is V , this voltage induces a current I = V/2R in the line. Hence the

mean power emitted down the line and absorbed by the resistor at the other end is

R
〈
I2

〉
= R

〈
V 2

4R2

〉
=

1

4R

∫ ∞

0

S(ω) dω , (28)

or S(ω)dω/4R in the frequency range between ω and ω +dω. Equating this to equation (27)

gives

1

4R
S(ω)dω =

1

2π
E(ω) dω

S(ω) =
2R

π

~ω

eβ~ω − 1
, (29)

which is quantum-mechanically correct. Substituting for ω = 2πf into (29) yields

SV (f) = 4R
hf

ehf/kBT − 1
, (30)

where h is Plank’s constant. For hf � kBT , the Plank distribution (26) becomes the classical

energy kBT and then there is no frequency dependence and the noise can be thought of as

white. At room temperature the quantum-mechanical correction applies at 6.25 THz. Since

our circuits work at frequencies orders of magnitude less than this number, we can use a

simple equation for Thermal noise gained from substituting the asymptotic expression for

the Plank distribution into (30)

SV (0) = 4kBTR . (31)

We can see quite a difference in the mathematical form of the frequency cutoff between

equations (25) and (30). Also note that though equation (25) is a current spectrum and

equation (30) is a voltage spectrum, we can also express thermal noise in terms of a power

spectral density (i.e. P = I2R = V 2/R). I will now give a physical argument based on power

developed by Prof. Frensley to explain this difference. If we study the power delivered to

an impedance-matched load from a Norton source, the ac signal power delivered will be
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P = 1
2
R〈I2〉. But, only half of the source current will flow through the matched load, so we

get a factor of 1/4. Therefore the power spectral density will be

SP (f) =
RSI(f)

8
=

kBT

2

(
1

1 + ω2τ 2

)
. (32)

The thermal noise analysis by Nyquist given above proceeds from a thermodynamic argument

that there should be a power density of 1
2
kBT df in any frequency interval df . However, this

creates a problem because the total power should be the integral of SP over all frequencies,

and if SP is a constant, then this integral will diverge. Thus, there must be some upper

frequency cutoff to the noise spectrum. This is precisely the same problem as the “ultraviolet

divergence” in the classical theory of black-body radiation. This divergence was removed

by Plank with the introduction of the quantum hypothesis. (In fact, black-body radiation

is simply thermal noise in a radiation field, and “black” means that the body is exactly

impedance-matched to the electromagnetic radiation field.) Nyquist invoked the quantum

limit, to find a frequency cutoff on the order of kBT/~.

The analysis of section 1.3, however, shows a cutoff that is dependent on the material

properties of the resistor, through the relaxation time τ . This would appear to be in conflict

with the more general treatment by Nyquist. There really is no contradiction, if we use the

RLC equivalent circuit model of a resistor. When we associate the noise current generator

with the ideal resistance, then the inductance due to electron inertia will obviously have some

effect on the noise current observed at the terminals of the physical resistor. It is easy to show

using circuit analysis with the time constant definition, τ = L/R, that the spectral density in

equation (25) will appear at the resistor terminals if a noise source having SI(f) = 4 kBT/R

is placed across the ideal resistor.

In summary, there has to be a cutoff to the thermal noise spectrum in any physical

device. The cutoff frequency will depend upon the details of electron transport in the device

in question. However, these transport details will also reflect in the high-frequency impedance

of that device, so that the Nyquist theorem in the form SP (f) = 1
2
kBT , is satisfied up to

the quantum frequency limit.
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