

Federal University of Santa Catarina Department of Electrical Engineering Integrated Circuits Laboratory

Modeling and Parameter Extraction of Zero-VT MOSFETs for Ultra-Low-Voltage Operation

Carlos Galup-Montoro, Márcio C. Schneider, and Márcio B. Machado

Outline

 ⇒ MOSFET model in weak inversion & triode regions
⇒ Low voltage operation of the basic amplifiers
⇒ Zero-VT MOSFETs
⇒ Colpitts oscillators

MOSFET: Weak inversion (WI) model

n: slope factor (= 1.05 - 1.1 for zero-VT transistors),

 V_P : pinchoff voltage; V_{TO} : threshold voltage

MOSFET: low-frequency small-signal model in the triode region

 $g_{ms} = g_{mg} + g_{mb} + g_{md}$

4

Low-voltage operation of the commonsource amplifier

Low-voltage operation of the commongate amplifier

The common-gate amplifier provides a voltage gain of greater than unity for $V_{DS}>0$. \rightarrow Very useful property for lowering the supply voltage limit for the operation of oscillators (later).

Common- gate Colpitts oscillator

• $I_D \ge V_{DS} (V_S = V_B)$ characteristics for a zero-VT transistor with W/L=2500µm/420nm. The values of the common-gate and common-source gains are 1.56 and 0.53, respectively, for V_{GS} = 0 V and V_{DS} = 25 mV.

First order approximation of the intrinsic cutoff frequency of the zero-VT (W/L=3µm/0.42µm), low-VT (W/L=0.84µm/0.12µm), and standard transistors (W/L=0.84µm/0.12µm) of a 0.13 µm CMOS technology. The transconductance g_m was simulated for V_S=V_B=0, and V_D=V_G=V_{DD}.

Circuit configuration for measuring the g_{mg}/I_D characteristic in the linear region

Experimental g_{mg}/I_D characteristic for a transistor with W/L = 2500 μ m/0.42 μ m

Circuit configuration for measuring g_{md}

 $g_{ms},\,g_{md}$ and g_{ms}/g_{md} as functions of V_{DD} for a transistor with W/L = 2500 $\mu m/0.42 \; \mu m$

Colpitts oscillators

Conventional Colpitts oscillator

Enhanced swing Colpitts oscillator (ESCO) *

* T. W. Brown et al, *IEEE JSSC*, Aug. 2011.

ESCO: small-signal model 1

$$v_s \cong \frac{v_d}{1 + \frac{C_2}{C_1}} \to g_{ms}v_s - g_{md}v_d \cong g'_m v_s$$

12

ESCO: small-signal model 2

Second-order small-signal model of the ES Colpitts oscillator.

ESCO: start-up condition

$$g_{ms} > \left(1 + \frac{C_2}{C_1}\right)g_{md} + \frac{C_1}{C_2}G_2 + \left(2 + \frac{C_1}{C_2} + \frac{C_2}{C_1}\right)G_1$$

Optimum value of capacitors to minimize g_{ms} (for the conventional Colpitts $g_{md} = G_2 = 0$!)

For ideal inductors (and capacitors) $G_1 = G_2 = 0$

$$V_{DD \lim} = \frac{kT}{q} \ln\left(1 + \frac{C_2}{C_1}\right)$$

Colpitts oscillator: first prototype

Powered by a thermoeletric generator

thermoelectric generator

24 // NMOS *K* Zero-VT (ALD 1108) VT=59 mV, IS=11.2 uA

V_{DD}=22.2 mV

T ≈24 ∘C

022253 oF1

Colpitts oscillator: second prototype

Second prototype: experimental results

V_{DD,min} x C2/C1

Colpitts oscillator IC: simulation results

 $W/L = 2500 \ \mu m \ / \ 0,42 \ \mu m$

Results (Simul. from layout)

Designed f	300 MHz
f (262 MHz
$V_{DD,min}$	86 mV
$V_{S,PP}$	23 mV
$V_{DD,max}$	650 mV
(Vdd=86 mV)	

Summary

- There is no V_{DD} hard limit for low voltage operation of analog MOS circuits (oscillators can operate with supply voltage values below kT/q)
- The ideal active device for low voltage operation is characterized by small footprint and high drive capability at low supply voltages → MOSFETs with threshold voltage ~ 0 V are excellent choices for ULV operation
- The charge-based MOSFET model is very convenient for the design of ultra-low-voltage circuits (operation in triode region/ WI)

References

- F. R. de Sousa, M. B. Machado, C. Galup-Montoro, "A 20 mV Colpitts Oscillator powered by a thermoelectric generator", *ISCAS 2012*.
- C. Galup-Montoro, M. C. Schneider, and M. B. Machado, "On the ultra-low-voltage operation of CMOS analog circuits: amplifiers, oscillators, and rectifiers', to appear in IEEE TCAS II.