0.9V, 5nW, 9ppm/C Resistorless Sub-Bandgap Voltage Reference in 0.18um CMOS

Oscar Mattia, Hamilton Klimach and Sergio Bampi

Microelectronics Graduate Program
Electrical Engineering Department & Informatics Institute
Federal University of Rio Grande do Sul
Porto Alegre, Brazil
Outline

• Introduction
• Circuit Description
• Design Methodology
• Simulation Results
• Conclusion
• Acknowledgements
Introduction

Basic Principle of the Bandgap Reference, introduced by Widlar in 1971:

CTAT voltage counterbalance

PTAT voltage

PTAT & CTAT: proportional and complementary to absolute temperature
Circuit Description
Circuit Description – BJT Bias

- Sweep VG1;
- Mirror Id to the junction;
- Find the crossing point between VG1 and Ve.
Circuit Description – BJT Bias

[Diagram of BJT bias circuit]

DC Op. Point

[Graph showing DC operation point]
Circuit Description – BJT Bias

\[V_E = \frac{\phi_t}{1 - \frac{1}{m} - \frac{1}{2n}} \left[1 + \ln \left(\frac{2eKW}{5L} \frac{I_{SQ}}{I_{SE}} \right) \right] \]

- \(I_{SQ} \) – MOS Specific Current
- \(I_{SE} \) – Junction Reverse Saturation Current
- \(V_{TO} \) – Threshold Voltage
- \(n \) – MOS subthreshold slope
- \(m \) – BJT non-ideality factor
- \(W \) – MOS width
- \(L \) – MOS length
- \(\phi_T \) – Thermal Voltage
Circuit Description – BJT Bias

\[V_E = \frac{\phi_t}{1 - \frac{1}{m}} [1 + \ln \left(\frac{2eKW ISQ}{5L I_{SE}} \right) - \frac{V_{T0}}{n\phi t}] \]

< 0dB
Stable

LASCAS’2014 - 0.9V, 5nW, 9ppm/°C Resistorless Sub-Bandgap Voltage Reference in 0.18um CMOS
Circuit Description – Self-Cascode

- Both transistors are in weak inversion;
- M_{HIGH} is in saturation;
- M_{LOW} can be in saturation or in triode.

$$V_{DS(\text{LOW})} = n\phi_t \ln \left(\frac{I_{\text{LOW}}S_{\text{HIGH}}}{I_{\text{HIGH}}S_{\text{LOW}}} \right)$$

Circuit Description – Sub-BGR

Bias Circuit
Circuit Description – Sub-BGR

3 Self-Cascode Cells
Circuit Description – Sub-BGR

\[V_{REF} = V_{GS1} + V_{PTAT} = \frac{V_E}{2} + n\phi_t \ln \left(60 \frac{S_3S_5S_7}{S_2S_4S_6} \right) \]

-1mV/°C

+1mV/°C
Design Methodology

• Junction voltage of 550 mV – 3.5 nA;
 • At least 500 pA @ 27°C for ID of every MOSFET;
 • Balance the SC PTAT cells contribution;
 • Round numbers for current mirror and SC PTAT aspect ratio gains;
 • Standard transistors with VB = 0.
Simulation Results - Layout

Area = 0.0012 mm² in 0.18um XFAB
Simulation Results - Temperature

(a) V_{REF}

(b) Voltages (V)

(c) Currents (nA)

TC = 8.79 ppm/°C for 0 – 125°C

5 nW @ 27°C, 18 nW @ 125°C
Simulation Results – Power Supply

LS = 2.112 mV/V and 69pA/V
For VDD = 0.85 - 1.8 V

PSRR @ 100 Hz = -48dB
VDD = 0.9 V
Simulation Results – Variability

Average Process Variation

- **VREF**
 - $\mu = 479.5 \text{ mV}$
 - $\sigma = 9.57 \text{ mV}$

- **TC**
 - $\mu = 479.5 \text{ mV}$
 - $\sigma = 3.851 \text{ mV}$

Local Random Variation

- $\sigma / \mu = 2\%$ die-to-die
- $\sigma / \mu = 0.8\%$ within-die

- Yield = 96% for TC < 50 ppm/°C
Simulation Results – Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.35</td>
<td>0.35</td>
<td>0.5</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>μm</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>0-80</td>
<td>-20-80</td>
<td>-40-120</td>
<td>0-125</td>
<td>-20-80</td>
<td>-40-120</td>
<td>0-125</td>
<td>°C</td>
</tr>
<tr>
<td>TC</td>
<td>10</td>
<td>7</td>
<td>11.8</td>
<td>142</td>
<td>176.4</td>
<td>114</td>
<td>8.79</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>Power</td>
<td>36</td>
<td>300</td>
<td>6.48E5</td>
<td>3.15</td>
<td>0.011</td>
<td>52.5</td>
<td>4.86</td>
<td>nW</td>
</tr>
</tbody>
</table>

All papers are experimental results, except for this work. The best case result was chosen for comparison in all works.

[8] – Ming et. al. TCAS II, 2010
Simulation Results – Comparison

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>0.35</td>
<td>0.35</td>
<td>0.5</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>μm</td>
</tr>
<tr>
<td>Power Supply</td>
<td>0.9-4</td>
<td>1.4-3</td>
<td>3.6</td>
<td>0.45-2</td>
<td>0.5-3.6</td>
<td>0.7-1.8</td>
<td>0.85-1.8</td>
<td>V</td>
</tr>
<tr>
<td>PSRR @ 100Hz</td>
<td>-47</td>
<td>-45</td>
<td>-31.8</td>
<td>-45</td>
<td>-49</td>
<td>-56</td>
<td>-48</td>
<td>dB</td>
</tr>
<tr>
<td>Area</td>
<td>0.045</td>
<td>0.055</td>
<td>0.1</td>
<td>0.043</td>
<td>0.0014</td>
<td>0.0246</td>
<td>0.0012</td>
<td>mm²</td>
</tr>
</tbody>
</table>

All papers are experimental results, except for this work. The best case reference was chosen for comparison in all works.

[8] – Ming et. al. TCAS II, 2010
Conclusion

- Presented a nano-Watt sub-bandgap voltage ref;
- New BJT bias topology and self-cascode PTAT cells;
- Achieves 9 ppm/°C for the 0 – 125°C temp. range;
 - 5 nW @ 27°C and 0.9 V;
- Very small area of 0.0012 mm².
Conclusion

• Average process variation is main cause for variability;
 • 2% sigma/mean process variation for V_{ref};
 • 96% yield for a TC < 50 ppm/°C;
 • Re-designed with similar results on IBM 0.13um.
 • Sent to fabrication on 18 February 2014.
Acknowledgments

• CI-BRASIL Program for licensing XFAB 0.18um PDK and financial support;
• MOSIS Educational Program for licensing IBM 0.13um PDK and fabrication;